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Neuralis halozat alapu megoldasok az iparban
a sikeres alkalmazasok feltételei
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Write a python code for training a neural network with one hidden layer with 15 neurcns. The
training data should be loaded from an excel file.

[ ]
Sejt m ag Axo N Sure! To train a neural network with one hidden layer and 15 neurons using training data 8 & &P

loaded from an Excel file, you can use the ~pandas " library to read the data from the Excel

file and the “seikit-learn” library to build and train the neural network. Here's an example

code:

python m Copy code

[SEULEH] pd
sklearn.neural_network MLPClassifier
sklearn.model_selection train_test_split

sklearn.preprocessing StandardScaler

» :
/ data = pd.read_excel(

data.drop(

— atal
I =woxg +wixy + Wyxy, + wixs + ... +wyx, y 7 et

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

model = MLPClassifier(hidden_layer_sizes=(15,), random_state=42)

model.fit(X_train_scaled, y_train)

accuracy = model.score(X_test_scaled, y_test)

print( , accuracy)

Bemeneti réteg Rejtett réteg Kimeneti réteg




Csak ennyi! A kihivas mashol van. De ott temérdek ...

Hidden Technical Debt in Machine Learning Systems
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A kihivas visszavezethetd a modellezési feladatra
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CRISP-DM (Cross Industry Strandard Process for Data Mining)
was conceived in late 1996 by three “veterans” of the young and
immature data mining market. DaimlerChrysler

(then Daimler-Benz) was already ahead of most industrial and
commercial organizations in applying data mining in its business
operations. SPSS (then ISL) had been providing services based
on data mining since 1990 and had launched the first
commercial data mining workbench—Clementine®—in 1994




Amely feladat osszetettsége egyre nyilvanvalobb ... (lasd CRISP-ML)

_..Understanding

."-.-+.-.".
¢ Use case
 forML
Ideate
Start
™

""]__Difaﬁcq_uis]ﬂn_nﬁ_l Model
| _Understanding | Development Deployment Operations
. o
o - R ,_‘5&:- //— ﬂE"hE
- learn i, ’ﬂ 1;:'::ﬁhi-'.'*'E’lE} X '«
’.-""E?H}{E &'{"JITE & '\'\ _.l‘r E.-{h% \ 8 -3'-:'
f.l'r t‘\["- e H‘HE:'? 1.\ ' / ‘“n 1,,_\:"":“.
I Vi éevelupmen; J # f Create #,qx
by ! w ST o
]|I, IIIQ%‘E-' ,--"*' Hﬂ%ﬁ !_. ﬂﬁ?_,%‘ ﬁd@? 3 o @
v.\]'-. i Build | "‘;’,.r / ‘F‘%‘%ﬂ},ﬁh yJerit \ W M@Db qf
NG AL - R
T -:-"""" 3'|||,,'|,'3 "db

Y e .

'rx Data source ! ( Feature ) ( Scoring ) (WebserviEEJ
- - g A

- T T engineering
(" Environment ! T { Performance ( Model store )
M ——— ~ @Ddel valldatma \_ monitoring _/
¢ Exploration &~ Intelligent
\_ Cleaning (MDdEl trammg) applications

Model Data
evaluation visualization




Annyira, hogy szabvanyositani és automatizalni érdemes ... (MLOps)
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A kihivas az alkalmazas korulményeire is visszavezethetd
Az Al/ML alkalmazasai tipizalhatok ... igy az algoritmusok kdrnyezete is.
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MI megolddasokat fejleszté szakmérnok: www.ai-academy.hu

M l d mim eg koze | |teS un k b en Ipar 4.0 megoldasokat fejleszt6 szakmérndk: www.ipar4.org
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Esettanulmany ... mintarendszer a MOL-bol

The qualification of each material is carried out by e
determining several essential parameters. i B R s
Unfortunately, traditional measurements are slow,
expensive and contain dangerous substances.

Molecular vibrations

e.g. Infrared spectroscopy is fast, one of the S
cheapest and chemical-free Target 4
variables
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Data collection -
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Data pre-processing

Data cleaning
Missing data
Noisy data

Data integration
Laboratory raw data
LIMS data
(MES data)

Data transformation
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EDA & Outlier detection & Feature engineering dl

Exploratory Data Analysis
Preparation
Base statistic analysis
Plot generation

Outlier detection

Dimension reduction with
Principal Component Analysis

Feature engineering
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ML development & validation e

[ Data collection }

Supervised learning: [ o } [ Data pre- ]
Monitoring processing
PLSR (Partial Least Squares Regression)

RFR (Random Forest Regression) s utlier
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ML algorithms development

2

Continuous ranking of ML models
Displacement of the best model

Target RMSE R? RPD
variables 10-cv perf. 10-cv perf. 10-cv perf.
PLSR 0.010 0.035 0.999 0.975 57.73 6.36
RFR 0.089 0.084 0.972 0.929 5.98 3.77
XGBR 0.005 0.112 0.999 0.747 31.62 1.98
10-cv: 10-fold cross-validation
perf.: results of the performance dataset (unknown samples)
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ML performance metrics

. . . Data collection
Several indicators must be continuously

monitored to ensure the good performance o [ Data pre- ]
Monitoring processing
of the models
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Performance monitoring of ML @

[ Data collection }

The performance of ML models may { } [ Data pre- ]
Monitoring

deteriorate processing

The cause of the deterioration can

. . [ EDA&OytIier ]
change over time [ Vodel Scoring ] Machine detection
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Performance monitoring of ML |/

Performance indicators take a different value
from the usual values

Only one indicator changes
All indicators change continuously over time,

the values gradually deteriorate, and it is no
longer suitable after a particular time.

Process Measurement

Standard

When do we classify a model as no longer

suitable? affects the
What do we do with it? model
What work order do we issue for it? accuracy

If the model no longer works, what options are
there to manage the model

Development of Statistical Process Control
(SPC) processes - business process Personal
development

Active learning
Augmented data generation



Visualization of ML models

2,

We need to visualize metrics and model
performance over time.

The performance of ML models can decrease over
time, which can be caused by several things.

Changes in performance must be detected in time,
and production must be intervened if necessary.

It is essential to consider several indicators and
perform a sensitivity test.

The aim is to reveal which production change has
what effect and to what extent each indicator.

Numses ot ags



Industrial architecture for ML application
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Lessons learned

The development of ML algorithms and their
operation is a matter of research at MOL

Development project, development of
appropriate methodology

Indicators should be monitored

Maintenance of models should be continuous
It must be managed at the system level

It requires expertise

Compliance must be qualified

Facilitating decision support

Let's face it bravely
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Thank you very much for your kind
attention!

(QJA




